If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+29x-10=0
a = 10; b = 29; c = -10;
Δ = b2-4ac
Δ = 292-4·10·(-10)
Δ = 1241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{1241}}{2*10}=\frac{-29-\sqrt{1241}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{1241}}{2*10}=\frac{-29+\sqrt{1241}}{20} $
| 5x+10+3x+10=4x+30 | | 3x+2/4=x-5 | | -3(j-7)+5=-1 | | 9-3a=8a-2 | | 11=1-8m-2m | | 2x^-x=15 | | -4k+14=-3k-3 | | -2+x/8=-4 | | 2(2k-7)=-3k-3 | | 6x+2-4x+7=37x=14 | | 5x+6-3x+14=2x-18 | | |9x-8|=|2x-11| | | -24-13n=-8n | | 25x+(9x+10)=180 | | 22-(x+8)=(8x-4) | | 20x+5x=65 | | 2/3x+2/3=1/3x+2/3 | | 5n-24-18n=-3n-5n | | B+90+(b+45)+3/2b+(2b-90)=540 | | 3/5x=850 | | 12=13+7b | | 2a+5=8a-7 | | 5(3x+4)-5(2x+3)=25x=4 | | 17=8-3(5+2w) | | (2x-2)(x-4)=0 | | (x+15)+(140)=(15x+15 | | 200+.20x=300+.12x | | 3x^2+1000=-17x^2+10000 | | -8(8+n)=-6(7n-3)=54 | | V=πr2 | | -3+9x=7x+9 | | 3(3p+4)=12+9p |